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This study applied the generalized matching equation (GME) to pitch selection in professional
baseball. The GME was fitted to the relation between pitch selection and hitter outcomes for
five professional baseball pitchers during the 2014 Major League Baseball season. The GME
described pitch selection well. Pitch allocation varied across different game contexts such as
inning, count, and number of outs in a manner consistent with the GME. Finally, within
games, bias decreased for four of the five pitchers and the sensitivity parameter increased for
three of the five pitchers. The results extend the generality of the GME to multialternative natu-
ral sporting contexts, and demonstrate the influence of context on behavior in natural
environments.
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In 1970, Herrnstein purported that “all
behavior is choice” (p. 253). Thus, although an
organism can emit a variety of responses at any
given moment, only one is selected by prevail-
ing contingencies of reinforcement. Under this
view, choice entails a dynamic interplay
between responses and their selection over time
by reinforcement. Over the past four decades,
researchers have made great strides in quantita-
tively modeling this dynamic interplay under
controlled, laboratory conditions. In particular,
one quantitative model of choice with robust

empirical support is the generalized matching
equation (GME; e.g., Baum, 1974; McDo-
well, 1989).
The GME describes the allocation of behav-

ior across multiple response alternatives and
may be written:
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Bi and Bo represent the rate of a target
response, and the rate of all other responding,
respectively, and ri and ro represent the rate of
reinforcement for the target response, and that
for all other responses, respectively. As noted
by McDowell (1989) the logarithmic form of
the matching equation describes a straight line
with a indicating the slope and log b indicating
the y-intercept. The slope represents a measure
of sensitivity to reinforcement and the y-
intercept represents a measure of bias for one
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response alternative (Baum, 1974). The loga-
rithmic form of the GME allows for compara-
tively easy interpretation of data through linear
regression when the data is plotted in x-y coor-
dinates. In addition, the logarithmic form of
the GME has been successfully applied to situa-
tions with more than one alternative response
(e.g., Elsmore & McBride, 1994; Kangas
et al., 2009).
Previous studies have assessed behavior using

the GME within a variety of naturalistic set-
tings. For example, the GME has described the
allocation of on-task (e.g., in seat) and off-task
behavior (e.g., out of seat, audible nonvocal
noise) in academic settings (e.g., Mace, Neef,
Shade, & Mauro, 1994, 1996); allocation
between problem behavior (e.g., aggression,
self-injurious behaviors) and appropriate alter-
native behavior (e.g., vocal requests, taps on the
arm) in clinical settings (C. S. W. Borrero
et al., 2010; J. C. Borrero & Vollmer, 2002;
Symons, Hock, Dahl, & McComas, 2003);
and the distribution of social behavior during
conversational exchanges based on differential
levels of social reinforcement (e.g., J. C. Borrero
et al., 2007).
Researchers also have used the GME to

describe the allocation of behavior in collegiate
and professional sports. For example, Vollmer
and Bourret (2000) assessed the proportion of
three-point shots to total shots taken as a func-
tion of points scored from three-point shots to
total points scored. The authors found that the
GME described shot allocation aggregated
across the season well, with shot allocation
within games being more variable. Similar
results have been found with application of the
GME to the ratio of passing plays to rushing
plays in football with yards gained for each as
the reinforcer (Reed, Critchfield, & Martens,
2006; Stilling & Critchfield, 2010).
Notwithstanding these successful applica-

tions of the GME, several areas of further
inquiry have the potential to increase the utility
of the GME in naturalistic settings. One area

that has seen minimal attention is the analysis
of antecedent variables that influence choice
within natural environments. One exception is
Stilling and Critchfield (2010) who observed a
bias for running on first and second downs,
and a bias for passing the football depending
on the game situation (e.g., bias for running
the football on first and second downs and
passing on third downs). These changes in
biases may suggest situation-specific effects that
are not captured by analysis of play selection
across the entire game.
The total number of response alternatives is

also important to consider when extending
matching into non-laboratory situations. Most
applications of the GME in natural sporting
environments have been restricted to two
response alternatives (i.e., run vs. pass, two- vs. -
three-point shot). Nevertheless, natural contexts
allow for one of many responses, and thus
more than one alternative response may be of
interest to the researcher. For example, in the
sport of baseball the majority of pitchers use
three or more pitch types within most games.
Finally, it is unclear whether and how

response and reinforcer characteristics change
over time in natural contexts. For example, as a
pitcher tires during a game his or her ability to
throw a fastball may become more effortful. In
addition, strikes and outs later in the game
might be experienced as a higher quality rein-
forcer than earlier in the game. Response char-
acteristics such as effort and reinforcement
characteristics such as reinforcer magnitude
have been demonstrated to influence the bias
parameter of the GME (e.g., Baum, 1974).
Similarly, the discriminability of reinforcement
schedules may change, with discriminability
increasing over the course of a game. Increased
discriminability of reinforcement schedules has
resulted in increased sensitivity to changes in
reinforcement within laboratory settings
(e.g., Madden & Perone, 1999).
The purpose of this study was to (a) evaluate

whether the generality of the GME extends to
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pitch selection in professional baseball,
(b) determine if pitch selection changes across
specific game situations, and (c) assess how bias
and sensitivity parameters change within
games.

METHOD

Participants
Nine starting pitchers from three different

Major League Baseball (MLB) teams (two
National League teams and one American Lea-
gue team) were selected based on the favorite
teams of the first and second author. Data were
collected across all regular season games during
the 2014 MLB season in which each of these
nine pitchers were designated as the starting
pitcher. During the season, four pitchers were
moved to the baseball club’s minor league sys-
tem or to a relief pitcher role. Thus, data from
five pitchers were used in the final analysis and
all were from National League baseball teams.

Data Collection
Data were obtained by observing individual

games using the Major League Baseball At-Bat
application Version 3.1.1 for iPhone, iPad, and
computer (2014). Antecedent data were col-
lected for every pitch thrown across the follow-
ing categories: the inning within which each
pitch was thrown (inning), the batter’s position

within the lineup (batter), the specific count of
balls and strikes at the time of the pitch
(count), the general count of balls and strikes
at the time of the pitch (count: ahead, even, or
behind, AEB), the number of outs that had
been recorded within that inning (outs), the
difference in score between the pitcher’s team
and the opposing team (score differential), and
the location of any runners on the base paths
(runners).
Pitches were categorized as fast and straight

(e.g., four-seam fastball, two-seam fastball), fast
and breaking (e.g., slider, cutter), slow and
straight (e.g., circle-changeup, palm ball), or
slow and breaking (e.g., curveball). The degree
of break on each pitch was easily observed and
allowed data collectors to differentiate between
straight and breaking pitch types (see interob-
server agreement below). In addition, the
posted speed on the At-Bat application allowed
for differentiation between fast and slow pitch
types. These categories were selected prior to
the start of the study as each pitcher had a his-
tory of throwing at least one pitch from three
or four of these categories. Visual examples of
these categories are shown in Figure 1.
Once thrown, the speed of each pitch was

shown on the screen. The speed of each pitch
aided in determining whether it was a fast or
slow pitch for each pitcher. Overall, fast pitches
ranged from upper 80 miles per hour (mph;

FAST & STRAIGHT
FASTBALL     

FAST & BREAKING
SLIDER       

SLOW & STRAIGHT
CHANGE-UP       

SLOW & BREAKING
CURVE-BALL

Figure 1. Example path of the baseball for each of the four categories measured within this study. Paths are those
that would be observed for a right handed pitcher from the pitcher’s point of view. The rectangle indicates the strike
zone. Left handed pitchers would result in the mirror image.
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128.7 kilometers per hour [kph]) to upper
90 mph (144.8 kph) with the specific range for
each pitcher being idiosyncratic. Average fast-
ball velocities in miles per hour during the
2014 season for participants 1–5 were 91.1
(146.6 kph), 95.4 (153.5 kph), 92.6
(149 kph), 89.6 (144.2 kph) and 92.0
(148 kph), respectively (fangraphs.com, 2016a;
2016b; 2016c; 2016d; 2016e). In addition,
each pitcher threw a fastball as the first pitch to
start each game. The initial miles per hour pro-
vided the data collector an approximate starting
miles per hour that determined the remaining
pitch categories. Slow pitches were defined as
being slower by 5 mph (8 kph) or more than
that pitcher’s fast pitch. For example, partici-
pant 3 threw his fastball (fast and straight)
between 91 and 99 mph (146.5 and 159.3
kph) during most games. His changeup (slow
and straight) was between 83 and 88 mph
(133.6 and 141.6 kph). This relative difference
in speed was also used in determining whether
a given breaking pitch was fast or slow
(e.g., participant 3’s slider was 86 to 89 mph
[138.4 to 143.2 kph], whereas the curveball
was 76 to 81 mph [122.3 to 130.4 kph]).
Each instance of a strike, ground/fly out(s),

strikeout, fielder’s choice, sacrifice, or an error
on a position player or the catcher (if the pitch
was called a strike) was counted as reinforce-
ment. A fielder’s choice or sacrifice occurs
when a pitched ball is batted into play and
either a runner on the base paths or the batter
gets out, respectively, allowing the other
player(s) to advance. These were scored as rein-
forcement, as an outcome beneficial to the
pitcher’s team occurred despite the batter still
reaching base (fielder’s choice) or other runners
advancing on the base paths (sacrifice). Errors
on position players were counted as reinforce-
ment as the pitch induced a batted ball that
would typically result in an out but failed to on
that occasion (see Major League Baseball,
2016, for definition of an error in baseball).
That is, the batter did not hit the ball well

enough to get a hit, but due to a mistake by
someone other than the pitcher, the batter
reached base. No differential weight was
assigned to ‘outs’ compared to ‘strikes’ for rein-
forcer amount.

Interobserver Agreement
Interobserver agreement (IOA) was calcu-

lated for 33% of all of the games scored. Inter-
observer agreement was calculated by scoring
agreement for each of the antecedent, behavior,
and consequence categories for every pitch of
all games that were coded for IOA. Each pitch
thrown therefore resulted in seven opportu-
nities for agreement for the various aspects of
the antecedent context, one opportunity for
agreement for the type of pitch thrown, and a
varied number of opportunities for agreement
for the consequence, depending on what hap-
pened after each pitch. For example, if just a
strike or ball was thrown then there was one
opportunity for consequence agreement. If the
play resulted in a base hit that scored one run,
then there were three opportunities for conse-
quence agreement in strike, single, and runs
batted in. The overall percentage was then cal-
culated by summing all antecedent, behavior,
and consequence data that were in agreement
and dividing that sum by the total number of
opportunities for agreement. Interobserver
agreement was 97% overall (range, 88.9%-
100%) and 93% for behavior and consequence
data only (range, 72.6%-100%).

Data Analysis
All five pitchers threw a fastball (fast and

straight) on the majority of opportunities.
Herrnstein (1970) provided two equations to
calculate the smallest and largest proportions of
responses that could occur given observed rein-
forcements and responses (Herrnstein, 1970;
Equations 2 and 3). If a wide range is calcu-
lated, then patterns of responding described by
the matching equation provide information
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about the choice behavior of the organism. If
ranges are small, a pattern of responding con-
sistent with matching would have little empiri-
cal content (Herrnstein, 1970). As such, the
proportion of fastballs to all pitches was plotted
as a function of the proportion of reinforce-
ment for fastballs to all reinforcement. The
range of possible responses was then calculated
based on Equation 2 and Equation 3 from
Herrnstein for each of the fastball proportions.
Then, the GME was fitted in several ways

for each pitcher: with the number of fast and
straight pitches as Bi, with fast and breaking as
Bi, with slow and straight as Bi, and with slow
and breaking as Bi. The total number of all
other pitches was always Bo. The ratio of
pitches and reinforcers was also aggregated and
plotted for each individual game and for the
season as a whole for each of the five pitchers
and for each pitch type.
In addition, fast and straight data were

replotted for each game and the season as a
whole for several antecedent contexts. Contexts
analyzed were inning, number of outs recorded
in the inning, batter, count of balls and strikes,
score of the game, and location of runners on
the bases. Innings and outs were selected as
they represented different within-game scales
for which one might expect learning to occur.
Fitting the GME to data plotted across innings
allowed determination of whether changes in
pitch ratio would be susceptible to changes in
strikes and outs over the course of a game.
Only innings 1 through 6 were used as all of
the pitchers were relieved after the 6th inning
for most of their starts. Outs of zero, one, and
two were used for the context analysis of outs.
Other antecedent contexts were selected as

the result of common game strategies (see
Hample, 2007, for overview). Briefly, differen-
tial hitting abilities may result in different pitch
ratios based on the position of the hitter in the
lineup, a higher probability of breaking pitches
is commonly observed when the pitcher is
ahead rather than behind in the count, overall

team success (i.e., pitcher winning, tied, or los-
ing) may shift pitching strategy, and the posi-
tion of the runners on the base paths may
influence pitching strategy. Each context was
identified to determine if pitching strategies
common to various baseball contexts would
correspond with descriptions of the GME.

RESULTS

Figure 2 shows proportional matching for
the individual pitchers. In addition, the maxi-
mum and minimum values calculated from
Herrnstein (1970) are plotted for each game.
Relatively broad ranges of potential proportions
were observed for four of the five participants.
All five participants were observed to throw a
proportion of fastballs similar to the proportion
of strikes and outs over the course of the
season.
We then determined how well the GME

described pitch selection for these five profes-
sional baseball pitchers. Figure 3 shows the
matching functions for all four pitch categories
for the individual pitchers. Overall, the GME
described pitch selection for each participant
relatively well, accounting for an average pro-
portion of variance (VAC) of 0.93 (range,
0.91-0.97). When separated by pitch type, we
observed average VACs of 0.71 (range, 0.58-
0.85), 0.76 (range, 0.31-0.92), 0.77 (range,
0.63-0.88), and 0.87 (range, 0.78-0.96) for fast
and straight, fast and breaking, slow and
straight, and slow and breaking pitches, respec-
tively. Sensitivity parameters were also less than
1.00 for all five participants across almost all
pitch types (only exception was slow and
straight pitches for participant 2; a = 1.02).
Bias toward fastballs was observed for partici-
pants 1 and 2, no bias was observed for partici-
pants 3 and 4, and a bias for nonfastballs was
observed for participant 5.
We then determined if pitch selection chan-

ged across specific game situations. The season
totals of fastballs compared to all other pitches
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within each antecedent context were plotted as
a function of reinforcement for fastballs com-
pared to all other pitches. For example,
Figure 4 shows matching functions for the
individual pitchers for the antecedent context
of inning. Each data point shows pitch selec-
tion as a function of reinforcement contacted
in a specific inning. The number of the
marker corresponds to the inning of the game
(i.e., 1 = first inning, 2 = second inning, etc.).
Visual analysis of these data suggests that pitch
selection changed across innings consistent
with changes in reinforcement contacted across
innings. Furthermore, four of the five partici-
pants threw more fastballs in the earlier
innings of baseball games (i.e., innings 1–3)

than in the later innings of baseball games
(i.e., innings 4–6).
Figures 5 through 8 depict the influence of

the remaining contexts on pitch selection.
Figure 5 demonstrates the influence of position
in the lineup of the batter from the opposing
team. More fastballs were thrown to the num-
ber 9 batter and the least number of fastballs
were thrown to the middle of the lineup
(i.e., 4, 5, or 6 hitter). Figure 6 shows the
influence of count on pitch selection. Four of
the five pitchers threw more fastballs when
behind in the count (i.e., more balls than
strikes) and the least when ahead in the count.
Figure 7 demonstrates the influence of outs
recorded on pitch selection. Four of the five

Figure 2. Results of the application of the proportional matching equation to pitch selection for each pitcher
(e.g., P1). Closed circles represent a single regular season game for that pitcher. Horizontal black lines represent the
maximum and minimum values each pitcher could have thrown in each game based on fits of Eq. (2) and
Eq. (3) from Herrnstein (1970) to observed data. The dashed grey line represents bias equal to zero and sensitivity
equal to 1 (i.e., “perfect matching”).
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participants threw more fastballs when there
were no outs compared to one or two outs.
Figure 8 shows the influence of score on pitch
selection; all five participants threw more fast-
balls when the game was tied and the least
number of fastballs when the pitcher was los-
ing. Finally, the GME described pitch selection
well for the context of position of runners on
the bases. However, no systematic trend was
observed for the position of runners on the base
paths across starting pitchers and thus those
plots are not shown.
We then determined how bias and sensitivity

parameters changed over the course of a base-
ball game. Figure 9 shows bias, sensitivity, and
VAC as a function of inning for each of the
five participants. Three of the five pitchers
showed a decrease in bias toward fastballs as a
function of innings; bias for pitchers 3 and

4 did not systematically vary as a function of
inning. Sensitivity parameters showed an
increase as a function of innings for three of
the five pitchers and remained relatively stable
for pitchers 4 and 5. For participant 1, VAC
was variable with no observed trend. An
increase in VAC as a function of innings was
observed for participant 2. Participants 3 and
5 were observed to have relatively little change
in VAC across innings—excluding inning 3 for
participant 5—and a decrease in VAC was
observed for pitcher 4.

DISCUSSION

For all five pitchers, there was a relatively
wide range of minimum and maximum values
for the proportion of fastballs to all other types
of pitches. However, all pitchers threw

Figure 3. Results of the application of the GME to pitch selection for each pitcher (e.g., P1). Each data point repre-
sents a single regular season game for that pitcher. The dashed grey line represents bias equal to zero and sensitivity
equal to 1 (i.e., “perfect matching”).
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proportions of fastballs to all pitches that
matched the proportion of strikes or outs
from fastballs to all strikes and outs. These
data suggest that the observed matching
relations for this study were not trivially true
(Herrnstein, 1970).
The GME was fitted to pitch selection over

the course of the season for five starting pitch-
ers from MLB. Overall, the GME described
the allocation of pitches as a function of strikes
and outs. The VAC by the GME averaged
0.93 (range 0.91 to 0.97) for all pitches and
0.72 (range 0.58 to 0.85) for fastballs specifi-
cally. Three of the five pitchers showed bias for
throwing fastballs with two pitchers showing
little bias. All pitchers showed undermatching,
which is common within laboratory studies of

matching as well as studies fitting the GME to
responding in sports contexts (Alferink, Critch-
field, Hitt, & Higgins, 2009; Reed et al., 2006;
Romanowich, Bourret, & Vollmer, 2007; Stil-
ling & Critchfield, 2010; Vollmer & Bour-
ret, 2000).
The present study found the generality of

matching to extend to a naturally occurring
context with multiple response alternatives.
Previous research in sports and other applied
settings has primarily fitted the GME to two
response situations (e.g. 2- vs. 3-point shots,
run vs. pass plays, problem behavior
vs. appropriate behavior). In a laboratory set-
ting, Elsmore and McBride (1994) found that
the GME described changes in response and
reinforcer ratios for an eight-alternative

Figure 4. Results of fitting the GME to pitch selection for each pitcher (e.g., P1) based on the antecedent context
of inning. Each data point represents the ratio of behavior and reinforcement for the entire season for the corresponding
inning (i.e., 1 = first inning, 2 = second inning, 3 = third inning, 4 = fourth inning, 5 = fifth inning, and 6 = sixth
inning). The dashed grey line represents bias equal to zero and sensitivity equal to 1 (i.e., “perfect matching”).
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concurrent schedule. The current study fitted
the GME to response and reinforcer ratios in a
natural four-alternative context. Applying the
GME to a greater number of natural multio-
perant environments allows direct assessment of
the generality of the model when the likely
reinforcers are known (e.g., points in basket-
ball, strikes/outs in baseball). Research fitting
the GME to a variety of multioperant natural
contexts will aid in identifying limits in the
generality of the GME and variables influen-
cing matching in natural contexts. This, in
turn, would likely lead to increased social utility
of the GME beyond the current state.
This study also assessed the influence of

antecedent contexts on response allocation
(Stilling & Critchfield, 2010). All five pitchers

showed similar trends in pitch selection across
innings, batter, and score. Specifically, the ratio
of fastballs to other pitches decreased across
innings of baseball games, increased for the
number 9 batter compared to the middle of the
lineup, and increased when the game was tied.
Pitcher 5 was the only participant for whom
the data deviated from trends in outs and
count. The ratio of fastballs to other pitches
increased with zero outs and when behind in
the count for the other four pitchers.
The causal variable for trends in pitch selec-

tion across contexts is unclear. It is possible
that the antecedent contexts, as opposed to
reinforcer rates, played a causal role in deter-
mining pitch allocation. For example, a com-
mon rule for pitchers is to throw breaking

Figure 5. Results of fitting the GME to pitch selection for each pitcher (e.g., P1) based on the antecedent context
of batter in opposing lineup. Each data point represents the ratio of behavior and reinforcement for the entire season for
the corresponding batter (i.e., 1 = first batter, 2 = second batter, 3 = third batter, etc.). The dashed grey line represents
bias equal to zero and sensitivity equal to 1 (i.e., “perfect matching”).
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pitches aimed at the edges of the strike zone
with a count of zero balls and two strikes.
Breaking pitches may initially look like they
will be in the strike zone, increasing the likeli-
hood that the batter will swing to avoid striking
out. However, as the pitch breaks towards the
edge or outside of the strike zone, the batter is
likely to either miss the ball or hit the ball
poorly. Players 1–5 threw breaking pitches with
zero ball and two strike counts on 103 of
173 (60%), 69 of 146 (48%), 115 of
129 (89%), 99 of 166 (60%), and 101 of
238 (42%) of opportunities throughout the
season, respectively. This rule may play a role
in pitch selection in contexts in which the
pitcher is ahead in the count, and similar rules

pertaining to game strategy in other contexts
are likely to play a role in pitch selection. Nev-
ertheless, it is interesting that reinforcer rates
changed with pitch selection in a manner con-
sistent with the GME across the various con-
texts (see Figures 3–7). However, it is
unknown whether reinforcement within those
contexts was driving pitch selection because we
did not manipulate the contingencies directly.
Rules or other variables may have been guiding
pitch allocation within contexts with reinforce-
ment coincidentally changing according to
the GME.
Another interesting feature of the present

study is that multiple individuals were
involved in selecting pitches. The pitcher, the

Figure 6. Results of fitting the GME to pitch selection for each pitcher (e.g., P1) based on the antecedent context
of generic count. Each data point represents the ratio of behavior and reinforcement for the entire season for the corre-
sponding generic count of the pitcher being ahead in the count (A), behind in the count (B), or an even count (E). The
dashed grey line represents bias equal to zero and sensitivity equal to 1 (i.e., “perfect matching”).
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catcher, and/or the pitching coach may all
play a role in pitch selection. The number of
individuals involved likely depends on a num-
ber of variables such as the experience of the
pitcher and catcher, and prespecified situations
that would occasion a coach selecting the
pitch sequence. Nevertheless, the GME
described pitch selection well, despite the fact
that multiple individuals may have contribu-
ted to the ultimate choice of which pitch was
thrown.
Previous research has assessed changes in bias

and sensitivity parameters as a function of time
in natural contexts using statistical analyses at
the group level (Stilling & Critchfield, 2010).
This study analyzed how these parameters

changed over time within a game for each par-
ticipant. Reductions in bias over the course of a
game indicated that pitchers were less likely to
throw fastballs as the game progressed, inde-
pendent of strikes and outs contacted by each
pitch type. This suggests response or reinforcer
characteristics may have changed over the
course of a game. One possible example of this
may be increased response effort to throw fast-
balls compared to other pitches over time. Fast-
balls are typically more effective the harder they
are thrown, whereas breaking pitches are typi-
cally more effective the more the pitch breaks.
The degree of break is not determined by how
hard the ball is thrown. Rather, the degree of
break is controlled by finger placement on the

Figure 7. Results of fitting the GME to pitch selection for each pitcher (e.g., P1) based on the antecedent context
of outs. Each data point represents the ratio of behavior and reinforcement for the entire season for the corresponding
number of outs recorded to that point in the inning (i.e., 0 = zero outs recorded, 1 = 1 out recorded, and 2 = two outs
recorded). The dashed grey line represents bias equal to zero and sensitivity equal to 1 (i.e., “perfect matching”).
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baseball, angle of the arm on pitch release, and
the angular rotation of the ball as it is released
from the hand of the pitcher. Fatigue through-
out a game likely will decrease how hard one
can throw a fastball but would not necessarily
affect responses controlling degree of break on
a pitch.
In this study, sensitivity describes the change

in pitch selection as a function of change in the
amount of strikes and outs contacted by each
type of pitch. An increase in sensitivity over the
course of a game indicated that pitcher behav-
ior was more sensitive to change in strikes and
outs in later innings compared to earlier
innings. These results are consistent with previ-
ous laboratory research that has observed

increases in sensitivity parameters within ses-
sions (Aparicio & Baum, 2006, 2009; Davi-
son & Baum, 2000; Rodewald, Hughes, &
Pitts, 2010).
One limitation of this study stems from a

common strategy in baseball to use sequences
of pitches to “set up” the hitter. That is, throw-
ing one or two specific pitches in specific loca-
tions such that the next pitch thrown will “fool
the hitter” (i.e., increase the latency to accurate
discrimination of the pitch type and result in
the batter swinging poorly at the thrown ball).
Multiple pitch sequences were not the unit of
analysis within this study. Future research
should attempt to incorporate pitch sequences
to determine if matching occurs across

Figure 8. Results of fitting the GME to pitch selection for each pitcher (e.g., P1) based on the antecedent context
of score. Each data point represents the ratio of behavior and reinforcement for the entire season for the corresponding
score of the game at the time the pitch was thrown. T = tied game, W = the pitcher was winning, L = the pitcher was
losing. The dashed grey line represents bias equal to zero and sensitivity equal to 1 (i.e., “perfect matching”).
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sequences of responses coded as a single unit
compared to individual pitches. In other words,
the functional unit being selected by reinforce-
ment contingencies in baseball may not be lim-
ited to single pitches, as was assumed in this
study.
The generality of the GME can be tested by

applying it to a greater number of natural con-
texts involving multiple response alternatives.
Furthermore, understanding how different con-
texts influence the parameters of the GME will
further increase the utility of the model. The
GME described pitch selection generally and
within specific contexts. Different game situa-
tions systematically influenced relative prefer-
ence for throwing fastballs. Finally, reductions
in bias and increases in sensitivity across
innings within games suggest reinforcement
and response parameters may have changed
over time within baseball games.
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